Noob Threads like "Hey all, just joined today!"

SUP3RNOVA

Goober Gay
Mar 5, 2007
2,300
72
0
Why do you idiots waste time responding with a meme to this?

Almost every stupid "Hey guys!" thread I see entails 20-30 responses with fucking stupid meme's saying why the OP is so stupid.

How about you don't waste your time posting in a pointless thread? What point does it serve to tell somebody that their first post is a stupid and pointless one, after 1-5 people have already clearly done so?

If you were actually smart, you'd just shut the fuck up and not say anything to begin with. Then those threads would have 0 responses, and fall out of view literally as quickly as possible.

Zip your goddamn e-penis into your skinny-jeans and spend your fucking worthless time scamming idiots more worthless than you.

i mad bro
 


1595201-oh_look_its_this_thread_again_super.jpg
 
Better to start a new thread about it instead I suppose

I'm bored, and I just saw a "Hey I'm new here!" thread that was responded to by at least 5 people with memes and "gtfo" responses. If you don't partake in such actions, you have no reason to be involved in this thread other than to waste your own time.

I've already explained the reason for this thread is out of boredom, that doesn't mean it's wrong.
 
Instead, I've provoked response from mainly people who do not take part in such activity that my thread has addressed. What's the point? To feel better about yourself by putting me down?

At least explain your logic.
 
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Phasellus varius hendrerit turpis, ac tempor lorem imperdiet id. Mauris ultricies, velit sed pulvinar pretium, mauris enim pulvinar risus, non tempus tellus diam eu mauris. Sed euismod magna et mi cursus sit amet fringilla lacus convallis. Nunc ac neque vitae lectus bibendum viverra. Sed ut lectus justo. Maecenas et enim non ipsum convallis rutrum cursus sed arcu. Maecenas risus enim, porttitor vel dapibus ac, ultrices ut quam. Nunc eu mauris vitae est gravida placerat. Integer turpis ligula, ultrices sit amet eleifend imperdiet, commodo quis sem. Nunc suscipit, nisl eu imperdiet eleifend, lacus turpis ornare sem, tempor tempor elit eros vitae dui. Sed et enim turpis. Sed nisl magna, rutrum id fermentum porttitor, semper vel tellus. Phasellus scelerisque metus eget nisi fermentum ac mattis metus porttitor. Maecenas lacus purus, interdum vel condimentum sit amet, faucibus nec dolor. Duis orci enim, eleifend ac mollis id, viverra vitae mi. Ut interdum auctor egestas. Aliquam tellus magna, lacinia mollis commodo id, bibendum non diam. Pellentesque convallis urna id nulla dictum congue. Morbi rutrum sapien vel arcu faucibus vel placerat massa facilisis. Pellentesque consequat dignissim erat eu vehicula.

Quisque ultrices blandit porta. Phasellus tincidunt dolor eu ipsum consectetur laoreet. Aenean a lacus nec sem aliquam ullamcorper in in felis. Phasellus vehicula semper massa eu iaculis. Sed sagittis luctus adipiscing. Sed condimentum viverra tellus, ac hendrerit ligula ullamcorper ut. In hac habitasse platea dictumst. Maecenas augue purus, posuere sit amet interdum sit amet, congue accumsan quam. Cras euismod tincidunt convallis. Aliquam auctor dolor commodo enim convallis nec lacinia elit porta. Phasellus sed mauris justo, ac laoreet lacus. Pellentesque eget purus dui. Nam volutpat ultricies arcu vitae feugiat. Aliquam vestibulum, quam eu pulvinar egestas, diam est ultrices elit, vitae molestie neque risus eget neque. Aenean ipsum libero, semper ac vehicula nec, hendrerit suscipit erat. Aenean in justo enim.

Sed tristique, velit sit amet adipiscing pulvinar, est est vehicula lectus, vel venenatis lectus odio eget leo. Quisque non aliquet sapien. Proin sem metus, semper ac tempus vitae, convallis in diam. Nulla rutrum sem sed neque porttitor ornare. Maecenas faucibus semper erat vitae pharetra. Curabitur massa risus, ullamcorper nec convallis non, aliquet vel nunc. Sed sed nunc sed nunc semper tristique. Nunc nec erat lobortis est sagittis adipiscing. Duis hendrerit vulputate sem vel porttitor. Curabitur ac urna sed erat congue dignissim vitae id tellus. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Cras quis dapibus enim. Cras ut leo vitae diam vestibulum porta et eu risus. Suspendisse mi dui, ultrices eget tincidunt id, scelerisque ut ligula. Praesent commodo nisl non mauris sagittis a imperdiet augue facilisis. Nulla lacus velit, interdum sit amet sodales ac, porta sed tellus. Duis quam metus, rhoncus non mattis eu, lacinia in turpis.

Sed ornare elementum enim quis sodales. Nam vestibulum quam odio, vitae laoreet urna. Aenean fermentum ullamcorper dolor quis sodales. Donec viverra ornare odio, et faucibus turpis commodo ac. Nullam porttitor molestie fringilla. Morbi ultricies blandit ornare. Nulla facilisi. Aenean eget lectus vel purus elementum dapibus. Aliquam et tellus eros, nec eleifend diam. Pellentesque in dui a dolor bibendum venenatis id eu ante. Nam non pulvinar enim. Pellentesque ligula metus, luctus et cursus ut, lobortis quis mi. Mauris iaculis sapien id nisi pretium sed commodo nunc feugiat. Quisque libero magna, tincidunt a lobortis id, dapibus sed odio. Mauris posuere orci eu ante elementum fringilla. Etiam vitae ante non nisi bibendum imperdiet. Cras metus magna, ultricies vel ultrices eu, mollis quis sapien.

Suspendisse feugiat, turpis sit amet egestas placerat, mauris sem suscipit odio, eget ultricies urna urna ut odio. Morbi nec fringilla nulla. Nam luctus euismod quam ut malesuada. Quisque ac nulla vel leo pulvinar suscipit. Etiam adipiscing dolor nec nisi tincidunt et placerat turpis molestie. Sed molestie neque sit amet massa tempor auctor sed in enim. Fusce fermentum, ipsum quis pretium tincidunt, ante libero vulputate erat, eget porttitor lectus odio ac lorem. Aliquam molestie condimentum nulla, id mattis ipsum tristique nec. Nam lorem velit, dapibus in semper eu, dictum sit amet ipsum. Duis vehicula pharetra elit quis luctus. Phasellus neque odio, tempus vel sagittis at, auctor ut nisi. Etiam et lectus mauris, a ultricies sapien. Mauris vulputate arcu et magna blandit eget rhoncus nunc gravida. Etiam quis convallis mauris. Donec orci odio, tristique nec tempor et, vestibulum ut augue. Nullam sit amet quam libero, at interdum lorem. Etiam in tellus sed tellus iaculis pretium id ut orci.
 
  • Like
Reactions: jorarulit
If intro thread is stupid, and responding to said thread is worse, then a thread about both.. .
 
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Phasellus varius hendrerit turpis, ac tempor lorem imperdiet id. Mauris ultricies, velit sed pulvinar pretium, mauris enim pulvinar risus, non tempus tellus diam eu mauris. Sed euismod magna et mi cursus sit amet fringilla lacus convallis. Nunc ac neque vitae lectus bibendum viverra. Sed ut lectus justo. Maecenas et enim non ipsum convallis rutrum cursus sed arcu. Maecenas risus enim, porttitor vel dapibus ac, ultrices ut quam. Nunc eu mauris vitae est gravida placerat. Integer turpis ligula, ultrices sit amet eleifend imperdiet, commodo quis sem. Nunc suscipit, nisl eu imperdiet eleifend, lacus turpis ornare sem, tempor tempor elit eros vitae dui. Sed et enim turpis. Sed nisl magna, rutrum id fermentum porttitor, semper vel tellus. Phasellus scelerisque metus eget nisi fermentum ac mattis metus porttitor. Maecenas lacus purus, interdum vel condimentum sit amet, faucibus nec dolor. Duis orci enim, eleifend ac mollis id, viverra vitae mi. Ut interdum auctor egestas. Aliquam tellus magna, lacinia mollis commodo id, bibendum non diam. Pellentesque convallis urna id nulla dictum congue. Morbi rutrum sapien vel arcu faucibus vel placerat massa facilisis. Pellentesque consequat dignissim erat eu vehicula.

Quisque ultrices blandit porta. Phasellus tincidunt dolor eu ipsum consectetur laoreet. Aenean a lacus nec sem aliquam ullamcorper in in felis. Phasellus vehicula semper massa eu iaculis. Sed sagittis luctus adipiscing. Sed condimentum viverra tellus, ac hendrerit ligula ullamcorper ut. In hac habitasse platea dictumst. Maecenas augue purus, posuere sit amet interdum sit amet, congue accumsan quam. Cras euismod tincidunt convallis. Aliquam auctor dolor commodo enim convallis nec lacinia elit porta. Phasellus sed mauris justo, ac laoreet lacus. Pellentesque eget purus dui. Nam volutpat ultricies arcu vitae feugiat. Aliquam vestibulum, quam eu pulvinar egestas, diam est ultrices elit, vitae molestie neque risus eget neque. Aenean ipsum libero, semper ac vehicula nec, hendrerit suscipit erat. Aenean in justo enim.

Sed tristique, velit sit amet adipiscing pulvinar, est est vehicula lectus, vel venenatis lectus odio eget leo. Quisque non aliquet sapien. Proin sem metus, semper ac tempus vitae, convallis in diam. Nulla rutrum sem sed neque porttitor ornare. Maecenas faucibus semper erat vitae pharetra. Curabitur massa risus, ullamcorper nec convallis non, aliquet vel nunc. Sed sed nunc sed nunc semper tristique. Nunc nec erat lobortis est sagittis adipiscing. Duis hendrerit vulputate sem vel porttitor. Curabitur ac urna sed erat congue dignissim vitae id tellus. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Cras quis dapibus enim. Cras ut leo vitae diam vestibulum porta et eu risus. Suspendisse mi dui, ultrices eget tincidunt id, scelerisque ut ligula. Praesent commodo nisl non mauris sagittis a imperdiet augue facilisis. Nulla lacus velit, interdum sit amet sodales ac, porta sed tellus. Duis quam metus, rhoncus non mattis eu, lacinia in turpis.

Sed ornare elementum enim quis sodales. Nam vestibulum quam odio, vitae laoreet urna. Aenean fermentum ullamcorper dolor quis sodales. Donec viverra ornare odio, et faucibus turpis commodo ac. Nullam porttitor molestie fringilla. Morbi ultricies blandit ornare. Nulla facilisi. Aenean eget lectus vel purus elementum dapibus. Aliquam et tellus eros, nec eleifend diam. Pellentesque in dui a dolor bibendum venenatis id eu ante. Nam non pulvinar enim. Pellentesque ligula metus, luctus et cursus ut, lobortis quis mi. Mauris iaculis sapien id nisi pretium sed commodo nunc feugiat. Quisque libero magna, tincidunt a lobortis id, dapibus sed odio. Mauris posuere orci eu ante elementum fringilla. Etiam vitae ante non nisi bibendum imperdiet. Cras metus magna, ultricies vel ultrices eu, mollis quis sapien.

Suspendisse feugiat, turpis sit amet egestas placerat, mauris sem suscipit odio, eget ultricies urna urna ut odio. Morbi nec fringilla nulla. Nam luctus euismod quam ut malesuada. Quisque ac nulla vel leo pulvinar suscipit. Etiam adipiscing dolor nec nisi tincidunt et placerat turpis molestie. Sed molestie neque sit amet massa tempor auctor sed in enim. Fusce fermentum, ipsum quis pretium tincidunt, ante libero vulputate erat, eget porttitor lectus odio ac lorem. Aliquam molestie condimentum nulla, id mattis ipsum tristique nec. Nam lorem velit, dapibus in semper eu, dictum sit amet ipsum. Duis vehicula pharetra elit quis luctus. Phasellus neque odio, tempus vel sagittis at, auctor ut nisi. Etiam et lectus mauris, a ultricies sapien. Mauris vulputate arcu et magna blandit eget rhoncus nunc gravida. Etiam quis convallis mauris. Donec orci odio, tristique nec tempor et, vestibulum ut augue. Nullam sit amet quam libero, at interdum lorem. Etiam in tellus sed tellus iaculis pretium id ut orci.

That's what she said.
 
The history of quantum mechanics dates back to the 1838 discovery, of cathode rays by Michael Faraday. This was followed by the 1859 statement of the black body radiation problem by Gustav Kirchhoff, the 1877 suggestion by Ludwig Boltzmann that the energy states of a physical system can be discrete, and the 1900 quantum hypothesis of Max Planck.[1] Planck's hypothesis that energy is radiated and absorbed in discrete "quanta", or "energy elements", precisely matched the observed patterns of black body radiation. According to Planck, each energy element E is proportional to its frequency ν.

Where h is Planck's constant. Planck cautiously insisted that this was simply an aspect of the processes of absorption and emission of radiation and had nothing to do with the physical reality of the radiation itself.[2] However, in 1905 Albert Einstein interpreted Planck's quantum hypothesis realistically and used it to explain the photoelectric effect, in which shining light on certain materials can eject electrons from the material.
The foundations of quantum mechanics were established during the first half of the twentieth century by Niels Bohr, Werner Heisenberg, Max Planck, Louis de Broglie, Albert Einstein, Erwin Schrödinger, Max Born, John von Neumann, Paul Dirac, Wolfgang Pauli, David Hilbert, and others. In the mid-1920s, developments in quantum mechanics led to its becoming the standard formulation for atomic physics. In the summer of 1925, Bohr and Heisenberg published results that closed the "Old Quantum Theory". Out of deference to their dual state as particles, light quanta came to be called photons (1926). From Einstein's simple postulation was born a flurry of debating, theorizing and testing. Thus the entire field of quantum physics emerged, leading to its wider acceptance at the Fifth Solvay Conference in 1927.
The other exemplar that led to quantum mechanics was the study of electromagnetic waves such as light. When it was found in 1900 by Max Planck that the energy of waves could be described as consisting of small packets or quanta, Albert Einstein further developed this idea to show that an electromagnetic wave such as light could be described as a particle - later called the photon - with a discrete quanta of energy that was dependent on its frequency.[3] This led to a theory of unity between subatomic particles and electromagnetic waves called wave–particle duality in which particles and waves were neither one nor the other, but had certain properties of both.
While quantum mechanics traditionally described the world of the very small, it is also needed to explain certain recently investigated macroscopic systems such as superconductors and superfluids.
The word quantum derives from Latin, meaning "how great" or "how much".[4] In quantum mechanics, it refers to a discrete unit that quantum theory assigns to certain physical quantities, such as the energy of an atom at rest (see Figure 1). The discovery that particles are discrete packets of energy with wave-like properties led to the branch of physics dealing with atomic and sub-atomic systems which is today called quantum mechanics. It is the underlying mathematical framework of many fields of physics and chemistry, including condensed matter physics, solid-state physics, atomic physics, molecular physics, computational physics, computational chemistry, quantum chemistry, particle physics, nuclear chemistry, and nuclear physics.[5] Some fundamental aspects of the theory are still actively studied.[6]
Quantum mechanics is essential to understand the behavior of systems at atomic length scales and smaller. For example, if classical mechanics governed the workings of an atom, electrons would rapidly travel towards and collide with the nucleus, making stable atoms impossible. However, in the natural world the electrons normally remain in an uncertain, non-deterministic "smeared" (wave–particle wave function) orbital path around or through the nucleus, defying classical electromagnetism.[7]
Quantum mechanics was initially developed to provide a better explanation of the atom, especially the differences in the spectra of light emitted by different isotopes of the same element. The quantum theory of the atom was developed as an explanation for the electron remaining in its orbit, which could not be explained by Newton's laws of motion and Maxwell's laws of classical electromagnetism.
Broadly speaking, quantum mechanics incorporates four classes of phenomena for which classical physics cannot account:
The quantization of certain physical properties
Wave–particle duality
The uncertainty principle
Quantum entanglement

In the mathematically rigorous formulation of quantum mechanics developed by Paul Dirac[8] and John von Neumann,[9] the possible states of a quantum mechanical system are represented by unit vectors (called "state vectors"). Formally, these reside in a complex separable Hilbert space (variously called the "state space" or the "associated Hilbert space" of the system) well defined up to a complex number of norm 1 (the phase factor). In other words, the possible states are points in the projective space of a Hilbert space, usually called the complex projective space. The exact nature of this Hilbert space is dependent on the system; for example, the state space for position and momentum states is the space of square-integrable functions, while the state space for the spin of a single proton is just the product of two complex planes. Each observable is represented by a maximally Hermitian (precisely: by a self-adjoint) linear operator acting on the state space. Each eigenstate of an observable corresponds to an eigenvector of the operator, and the associated eigenvalue corresponds to the value of the observable in that eigenstate. If the operator's spectrum is discrete, the observable can only attain those discrete eigenvalues.
In the formalism of quantum mechanics, the state of a system at a given time is described by a complex wave function, also referred to as state vector in a complex vector space.[10] This abstract mathematical object allows for the calculation of probabilities of outcomes of concrete experiments. For example, it allows one to compute the probability of finding an electron in a particular region around the nucleus at a particular time. Contrary to classical mechanics, one can never make simultaneous predictions of conjugate variables, such as position and momentum, with accuracy. For instance, electrons may be considered to be located somewhere within a region of space, but with their exact positions being unknown. Contours of constant probability, often referred to as "clouds", may be drawn around the nucleus of an atom to conceptualize where the electron might be located with the most probability. Heisenberg's uncertainty principle quantifies the inability to precisely locate the particle given its conjugate momentum.[11]
According to one interpretation, as the result of a measurement the wave function containing the probability information for a system collapses from a given initial state to a particular eigenstate. The possible results of a measurement are the eigenvalues of the operator representing the observable — which explains the choice of Hermitian operators, for which all the eigenvalues are real. We can find the probability distribution of an observable in a given state by computing the spectral decomposition of the corresponding operator. Heisenberg's uncertainty principle is represented by the statement that the operators corresponding to certain observables do not commute.
The probabilistic nature of quantum mechanics thus stems from the act of measurement. This is one of the most difficult aspects of quantum systems to understand. It was the central topic in the famous Bohr-Einstein debates, in which the two scientists attempted to clarify these fundamental principles by way of thought experiments. In the decades after the formulation of quantum mechanics, the question of what constitutes a "measurement" has been extensively studied. Newer interpretations of quantum mechanics have been formulated that do away with the concept of "wavefunction collapse"; see, for example, the relative state interpretation. The basic idea is that when a quantum system interacts with a measuring apparatus, their respective wavefunctions become entangled, so that the original quantum system ceases to exist as an independent entity. For details, see the article on measurement in quantum mechanics.[12] Generally, quantum mechanics does not assign definite values. Instead, it makes predictions using probability distributions; that is, it describes the probability of obtaining possible outcomes from measuring an observable. Often these results are skewed by many causes, such as dense probability clouds[13] or quantum state nuclear attraction.[14][15] Naturally, these probabilities will depend on the quantum state at the "instant" of the measurement. Hence, uncertainty is involved in the value. There are, however, certain states that are associated with a definite value of a particular observable. These are known as eigenstates of the observable ("eigen" can be translated from German as meaning inherent or characteristic).[16]